#### **Image Recognition for Alfalfa-Grass Mixtures**

Keenan McRoberts<sup>1</sup>, Jerry Cherney<sup>2</sup>, Maurice Benson<sup>3</sup>, Debbie Cherney<sup>1</sup>

Cornell University Department of Animal Science<sup>1</sup>, Cornell University Department of Crop and Soil Science<sup>2</sup>, 203 Solutions<sup>3</sup>

# Background

 Accurate prediction equations exist for estimating nutritive value and timing of spring alfalfa-grass harvest (Parsons et al., 2006, Agron. J. 98:1081–1089)

- Weak link is grass fraction in sward

- Overall objective: Generate accurate stand composition estimate using automated image processing system
- Predictions must be better than a guess to be useful
  - How good is a guess?
    - r<sup>2</sup>=0.43, RMSE=0.147, n=576 (Parsons et al., data from 2004)

### Grass and Alfalfa Estimation Tools

#### Contents

Information Sheets

Home Grass Manual

Tools

Factsheets Other Links

Grass Management for Dairy Cattle

#### **Grass Management for Dairy Cattle**

NOTE: Currently, these tools are Windows-only. We apologize for the inconvenience.

#### GMT-1: Grass NDF Estimation



Download

This tool allows estimation of current NDF and target harvest height for several grass species. The user provides the current grass canopy height, planned stubble height, and target NDF at harvest.

Reference: Parsons, D., McRoberts, K., Cherney, J.H., Cherney, D.J.R., Bosworth, S., Jimenez-Serrano, F. 2012. Preharvest neutral detergent fiber concentration of temperate perennial grasses as influenced by stubble height. Crop Sci. (in press).

#### GMT-2: Alfalfa-Grass NDF Estimation

This tool allows estimation of current NDF and target alfalfa harvest height for mixed alfalfa-grass stands. The user provides the current alfalfa maximum height (tallest stem) and percent grass in stand. The user can also modify target NDF for the stand, NDF rate of change per day, and also provide a slight adjustment for estimated weather conditions until harvest.

Reference: Parsons, D., Cherney, J. H., and Gauch, H. G., Jr. 2006. Estimation of Preharvest Fiber Content of Mixed Alfalfa-Grass Stands in New York. Agron. J. 98:1081-1089.

#### GMT-3: Alfalfa NDF Estimation

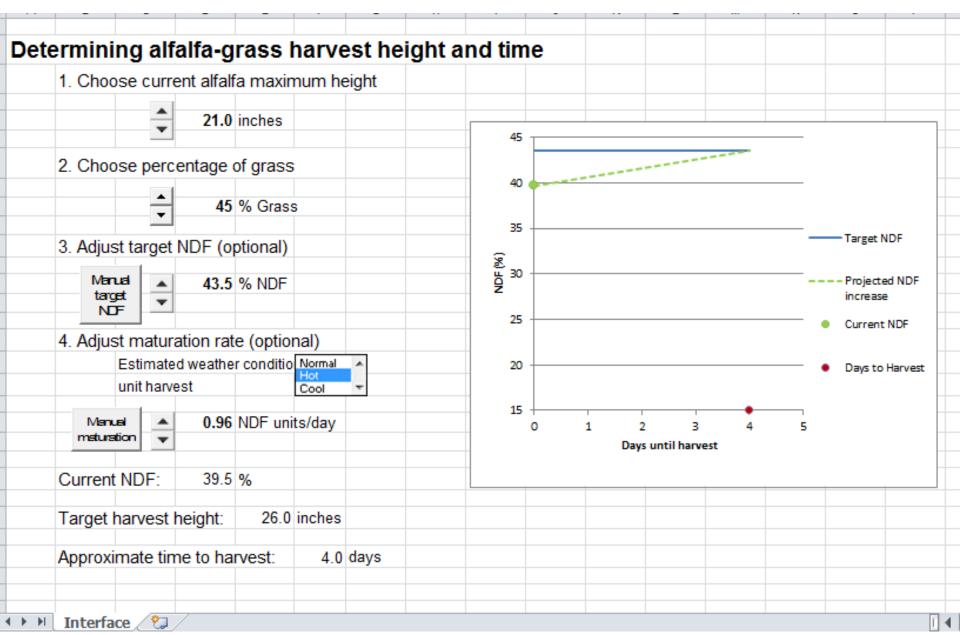
This tool allows estimation of current NDF and target harvest height for pure alfalfa. The user provides the current maximum height (tallest stem), planned stubble height, and target NDF at harvest.

Reference: Parsons, D., Cherney, J. H., and Gauch, H. G., Jr. 2006. Estimation of spring forage quality for alfalfa in New York State. Open Forage and Grazinglands doi:10.1094/FG-2006-0323-01-RS.

#### GMT-4: Economic Analysis of Changing Forage Content of Diets

This tool allows estimation of return per cow or CWT of milk as the amount of grass forage in the diet changes. Actual returns are based on the results of a dairy cow feeding trial with 4 levels of grass in the diet. The results of the feeding trial cannot be altered, but prices of ration components can be.

Reference: Cherney, D.J.R., J.H. Cherney and L.E. Chase. 2002. Performance of lactating Holstein cows as influenced by forage species, maturity, and level of inclusion. Prof. Anim. Scientist 18:316-323.


GMT-5: Economic Analysis of Changing Alfalfa-Grass Content of Diets

Download

Download

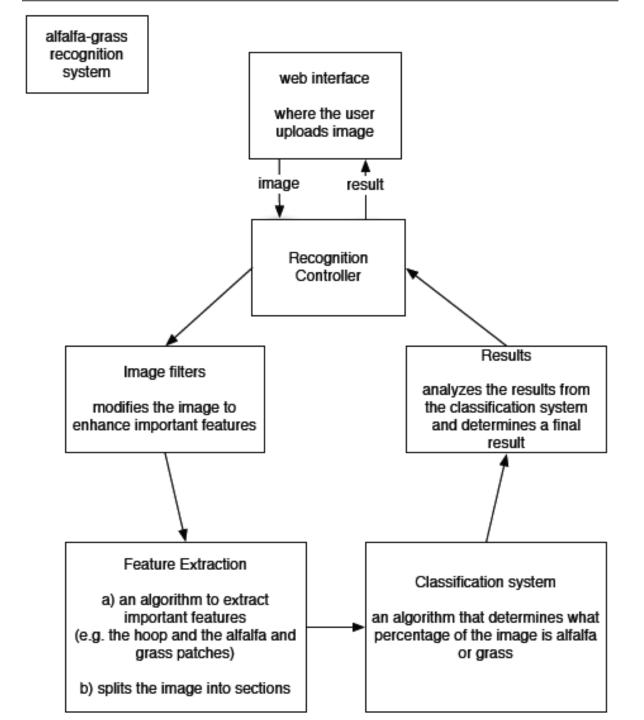
Mixed stand equations in: Parsons et al. (2006, Agron. J. 98:1081–1089)

#### **Alfalfa-grass NDF Estimation**



# Process flow

- 1. Capture digital images from representative samples of mixed stands in farmers' fields
- 2. Determine known stand composition values for each sample.
- 3. Create a software system to predict composition
- 4. Generate a free web service on http://www.forages.org


### **Sampling Process**

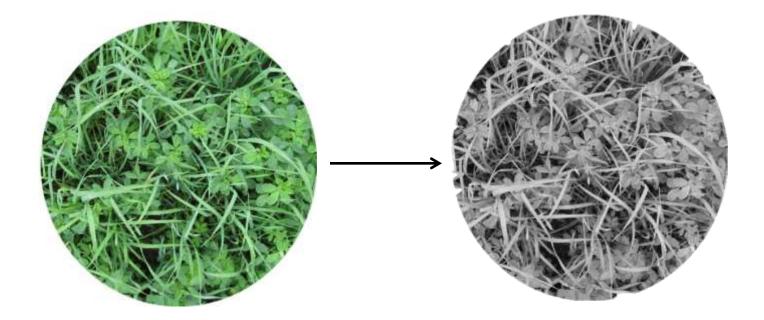








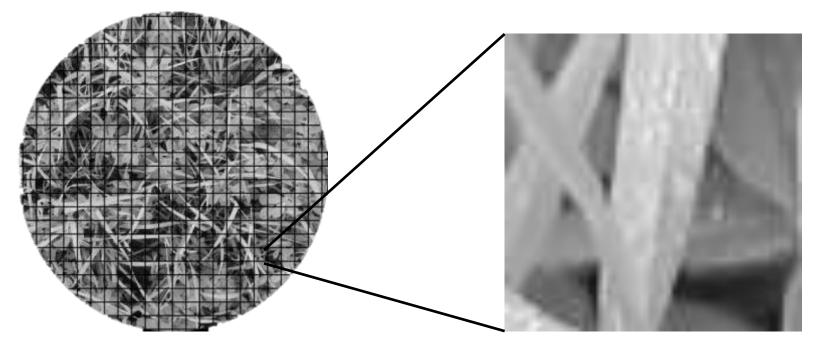




# Hoop Extraction



- Extract all of the green pixels
- Remove all low value pixels
- Find left, right, top, bottom pixels
- Extract the hoop

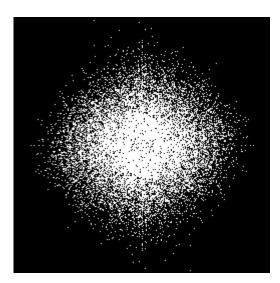


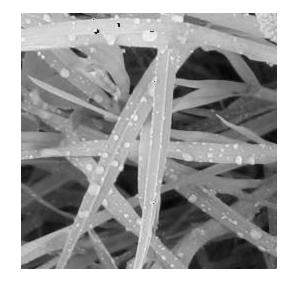

# Convert the hoop image to a gray scale with an emphasis on green pixels

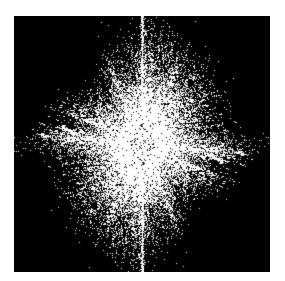


### Image Classification Techniques Tested

| Technique                                                                                                                                         | General Outcome                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Geometric pattern matching                                                                                                                        | No discreet patterns in mixed stand images                                             |
| Color separation                                                                                                                                  | Grass and alfalfa shade of green too close, especially under variable field conditions |
| Blob detection                                                                                                                                    | Each piece must be a separate entity to work                                           |
| Tile method with Fast Fourier Transformation<br>(Polder et al., 2007, 6th Biennial Conference of<br>the European Federation of IT in Agriculture) | Expressed frequencies different for alfalfa and grass                                  |


### **Tile Extraction**





- Crop 64x64 pixel tiles
- Analyze the individual tiles

#### **Fast Fourier Justification**









### **2D Fast Fourier Transformation**



- Run Fast Fourier algorithm on individual 64x64 tile
- Ignore all frequencies under threshold value (175)
- Lower frequencies are expressed at center of matrix; higher frequencies on the outside

# 2D Fast Fourier Transformation Continued



• 6 axial frequencies aggregated for x and y axis

### Image Classification Techniques Tested

| Technique                                        | General Outcome                                                                        |
|--------------------------------------------------|----------------------------------------------------------------------------------------|
| Geometric pattern matching                       | No discreet patterns in mixed stand images                                             |
| Color separation                                 | Grass and alfalfa shade of green too close, especially under variable field conditions |
| Blob detection                                   | Each piece must be a separate entity to work                                           |
| Tile method with Fast Fourier Transformation     | Expressed frequencies different for alfalfa and grass                                  |
| + Naïve Bayes Classifier Artificial Intelligence | Poor correlation of predicted and actual values                                        |

# Naïve Bayes Artificial Intelligence

- 580 digital images from 2011 with associated known values
- Decision rules defined on human noted patterns
- Simplistic examples:
  - Higher frequency above threshold value = grass
  - No higher frequencies expressed = alfalfa
  - The chance of being defined as alfalfa or grass depends on intermediate frequencies expressed
- Tile was thrown out when Naïve AI could not calculate definite probability

### Predicting grass fraction with Naïve Bayes Classifier Al

| Model:<br>Actual Grass % =                     | n   | r <sup>2</sup> | RMSE  | р                                         |
|------------------------------------------------|-----|----------------|-------|-------------------------------------------|
| Naïve Predicted Grass %                        | 316 | 0.01           | 0.155 | 0.12                                      |
| Alfalfa Max + Grass Cpy                        | 316 | 0.19           | 0.140 | Model <0.0001                             |
| Grass Predicted + Alfalfa<br>Max + Grass Cpy   | 316 | 0.20           | 0.14  | Model <0.0001<br>Grass Predicted = 0.0445 |
| OG Predicted + Alfalfa<br>Max + Grass Cpy      | 121 | 0.43           | 0.102 | Model <0.0001<br>OG Predicted = 0.0214    |
| Quack Predicted +<br>Alfalfa Max + Grass Cpy   | 39  | 0.43           | 0.106 | Model = 0.0002<br>Quack Predicted = 0.63  |
| RC Predicted + Alfalfa<br>Max + Grass Cpy      | 74  | 0.22           | 0.107 | Model = 0.0006<br>RC Predicted = 0.4344   |
| Timothy Predicted +<br>Alfalfa Max + Grass Cpy | 82  | 0.28           | 0.128 | Model <0.0001<br>T Predicted = 0.0468     |

### Image Classification Techniques Tested

| Technique                                                                                                                                                           | General Outcome                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Geometric pattern matching                                                                                                                                          | No discreet patterns in mixed stand images                                                                  |
| Color separation                                                                                                                                                    | Grass and alfalfa shade of green too close, especially under variable field conditions                      |
| Blob detection                                                                                                                                                      | Each piece must be a separate entity to work                                                                |
| Tile method with Fast Fourier Transformation (Polder et al., 2007)                                                                                                  | Expressed frequencies different for alfalfa and grass                                                       |
| + Naïve Bayes Classifier Al                                                                                                                                         | Poor correlation of predicted and actual values                                                             |
| + Fourier Frequencies                                                                                                                                               | Aggregated frequencies performed better than<br>Naïve AI; collinearity problems with<br>multivariate models |
| + Support Vector Machine – trained: LIBSVM<br>open source package (Chang & Lin, 2011, ACM<br>Transactions on Intelligent Systems and<br>Technology 2(3): 27:127:27) | Not fully tested, but preliminary results promising                                                         |
| + Support Vector Machine – untrained                                                                                                                                | Seeking AI package for testing                                                                              |

# Next Steps

- Support Vector Machine Trained (in progress)
  - LIBSVM package (Chang & Lin, 2011)
  - Binary classification of tiles in image set
    - 6% complete for 2011 set
  - Train AI and test with different subsets
  - Grass species specific development
- Support Vector Machine Untrained
- Reconsider threshold levels for Fourier filters
- Consider Fast Fourier alternatives

# Conclusions

- Among most difficult image analysis applications
- Work in progress
- If successful, probable materials needed for use:
  - Hula hoop (26" diameter) painted white
  - Digital camera or smartphone camera
  - Measuring stick (for alfalfa max height, possibly grass canopy height, grass max height, and grass species)
  - Internet access

# Acknowledgements

- Willett Farms, Hardie Farms, Diescher Farms
- Ken Paddock and field crew
- Brian Boerman
- NE SARE Graduate Student Grant